Multiscale Discontinuous Galerkin Methods for Modeling Flow and Transport in Porous Media
نویسندگان
چکیده
Multiscale discontinuous Galerkin (DG) methods are established to solve flow and transport problems in porous media. The underlying idea is to construct local DG basis functions at the coarse scale that capture the local properties of the differential operator at the fine scale, and then to solve the DG formulation using the newly constructed local basis functions instead of conventional polynomial functions on the coarse scale elements. Numerical examples are provided for demonstrating their effectiveness.
منابع مشابه
A Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media
In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...
متن کاملVariational Multiscale Finite Element Method for Flows in Highly Porous Media
We present a two-scale finite element method for solving Brinkman’s and Darcy’s equations. These systems of equations model fluid flows in highly porous and porous media, respectively. The method uses a recently proposed discontinuous Galerkin FEM for Stokes’ equations by Wang and Ye and the concept of subgrid approximation developed by Arbogast for Darcy’s equations. In order to reduce the “re...
متن کاملA Discontinuous Galerkin Reduced Basis Numerical Homogenization Method for Fluid Flow in Porous Media
We present a new conservative multiscale method for Stokes flow in heterogeneous porous media. The method couples a discontinuous Galerkin finite element method (DG-FEM) at the macroscopic scale for the solution of an effective Darcy equation with a Stokes solver at the pore scale to recover effective permeabilities at macroscopic quadrature points. To avoid costly computation of numerous Stoke...
متن کاملDiscontinuous Galerkin methods for coupled flow and reactive transport problems
Primal discontinuous Galerkin methods with interior penalty are proposed to solve the coupled system of flow and reactive transport in porous media, which arises from many applications including miscible displacement and acid-stimulated flow. A cut-off operator is introduced in the discontinuous Galerkin schemes to treat the coupling of flow and transport and the coupling of transport and react...
متن کاملA hybridizable discontinuous Galerkin method for two-phase flow in heterogeneous porous media
We present a new method for simulating incompressible immiscible two-phase flow in porous media. The semi-implicit method decouples the wetting phase pressure and saturation equations. The equations are discretized using a hybridizable discontinuous Galerkin (HDG) method. The proposed method is of high order, conserves global/local mass balance, and the number of globally coupled degrees of fre...
متن کامل